

Gedae Compiler User’s Manual

June 22, 2010

Address: Gedae, Inc.
 1247 N Church St, STE 5

 Moorestown, NJ 08057
Telephone: (856) 231-4458
FAX: (856) 231-1403
Internet: www.gedae.com

http://www.gedae.com/

Table of Contents

1 Introduction ... 4

2 Group Control Dialog ... 5
3 Partitioning .. 6
4 Mapping .. 8

Embedded Configuration File Description ... 8
Setting Trace Buffer Size and Memory Type ... 9

Setting Processor Parameters .. 9
Setting the Target Host ... 10

5 Transfer Method Control .. 11
Setting the Transfer Method ... 11
Setting Transfer Method Parameters .. 11

6 Firing Granularity ... 13

Setting the Granularity .. 13
Subscheduling ... 14

7 Multibuffering Unmapped Memory Transfers ... 15
8 Priority Table .. 22
9 Memory Packing Control .. 23

10 Setting Dynamic Queue Properties ... 24
11 Setting Static Schedule Thread Properties .. 25

12 Launch Package Generation Control .. 27
Parameters and Queues ... 27

Executables ... 28
Launch Package .. 28

1 Introduction
This document describes various features of the Gedae graph compiler. It includes

descriptions of various user controls over compilation, primarily the Group Control

Dialogs. It also describes how Gedae implements an application in response to user

settings.

The primary way of entering compiler settings is through tables. The tables have a few

basic properties. Any field with a white background can be modified. Fields with a grey

background cannot. A field that ends with an asterisk (*) indicates that the field has

been modified by the user. Text displayed in red indicates the value is derived from

another user setting. Most tables are hierarchical. The name column is grouped by

schedule or graph hierarchy that can be collapsed or expanded by double clicking or

through the Edit menu. Most tables have menu items in the Edit menu for setting all

items to the same value or for resetting all values to their default value. Most tables have

a Help menu item to explain basic functionality.

2 Group Control Dialog
The Group Control Dialog provides a central interface for the viewing and setting of

compiler parameters. A Gedae flow graph is divided into groups by the use of host

boundaries, such as the boxes in embeddable/stream/host. To open the Group Control

dialog, right click on a box whose group you want to control and select “Group

Control…” or use the menu item “Options->Group Control…” The Group Control

Dialog includes several toggles and menus to provide high level settings along with a

series of buttons for opening tables to provide more fine level settings.

3 Partitioning
The Partition Table allows the user to group boxes into partitions. It is launched using

the Partition Table button on the Group Control. Partitions can then be mapped to

physical processors in the Map Partition Table. Users group boxes by assigning boxes to

partition names. These partition names are arbitrary alphanumeric strings. Each box

assigned to the same name is in the same partition.

The Partition Table lists all the boxes in the group in the Name column. The list is

hierarchical and can be expanded or collapsed by double clicking on each name.

Assigning a parent box to a partition causes all the children and other descendent boxes

to also be assigned to that partition.

If families are used in creating the flow graph, then equations can be used to set family

members to different partitions. The equations consist of integers, quoted strings and

variables. The variables represent the family dimension and are $1, $2, etc. The value of

these variables can be modified via integer arithmetic in the equation, for example,

($1+100), supporting the operators +, -, *, /, and % (modulus). The result of this

arithmetic can be concatenated with quoted strings using the + operator. Parentheses can

be used to separate the integer arithmetic from the string concatenation.

4 Mapping
The Map Partition Table allows for mapping partitions to physical processors. It also

allows for setting processor-specific parameters such as trace collection and architecture-

specific settings. The Map Partition Table is launched by pressing the Map Partition

Table button in the Group Control.

The partitions created in the Partition Table are listed in the Name column of the Map

Partition Table. Partitions are mapped to processors by setting the ProcNum values for

each partition. The ProcNum values are defined in the embedded configuration. Each

physical processor in the system can have zero, one, or more than one partitions mapped

to it.

Similar to the partition table, equations can be used to map a set of partitions to a set of

processors. The $1, $2, etc. variable syntax is used to reference the 1
st
, 2

nd
, etc. integer in

the partition name. Integer arithmetic can be used in the ProcNum equations to translate

the integers inside the partition names into processor numbers.

The mapping of partitions to physical processors is not complete until the Run on Target

button in the Group Control Dialog is changed to on. If the graph is run with this button

off, then the partitions will all run on the host processor, and the inserted send and receive

boxes will simply copy data between buffers.

 Embedded Configuration File Description

The embedded configuration can be viewed using the Hardware Configuration Viewer.

The Hardware Configuration Viewer is launched by pressing the Configuration Viewer

button in the Group Control. The viewer lists each physical processor in the system. It

has four columns

 Name: the integer processor number.

 Physical Proc: the hostname (or I.P. address) of the processor where “local”

indicates the same processor as the development environment.

 System: the name of the board support package partitions mapped to this

processor will use.

 Type: the processor type.

 Setting Trace Buffer Size and Memory Type

The Map Partition Table can also be used to customize trace collection. Trace events are

shown in the Trace Table. The Map Partition Table is used to control how much space is

available for trace events and what memory partition those events are stored in. Trace

collection uses a circular buffer; the size of the buffer correlates to the duration of time

shown in the table. The Trace Size column is used to specify the size of the buffer. The

values are entered in number of bytes. Equations can be used to set the size for all

partitions. The Trace MemType column is used to store the events in a specific memory

bank or buffer. For example, on the Cell/B.E. processor, the user may wish to store

events in system memory instead of in SPE local storage to save local storage for more

vital program data.

 Setting Processor Parameters

Each board support package has several processor-specific parameters available. These

parameters can be entered into the Params column of the Map Partition Table. To find

out what parameters are available for the current hardware, select Options->View

Settable Params…

 Setting the Target Host

The Target Host area of the Group Control can be used to specify a host for the

application other than the development host. This target host can be any processor in the

embedded configuration, simply press the “Set” button in the group control and enter the

processor ID number of the selected physical processor. When it is selected, the

processor numbers in the Mapping Table now reference the embedded configuration file

named after the target host. For example, if the development host is a Linux x86

workstation and processor 100 is a Power Processing Element (PPE) of a Cell Broadband

Engine processor on the same network as the x86, one should set the target host to 100 to

gain access to the SPEs (Synergistic Processing Elements) underneath the PPE. Consult

the Embedded Configuration Manual for more information on setting up hierarchical

embedded configuration files.

The CP column of the Map Partition Table is used to specify which processor runs the

command program. Selecting this option forces the group’s target host to be set to the

development host. Command programs generated while using the CP column setting

require that each generated executable be explicitly started without help from the

command program.

5 Transfer Method Control
The Transfer Table is used to set communication properties for any processor to

processor connection and is launched by pressing the Transfer Table button in the Group

Control. If two kernels are connected by an arc and mapped to different processors, then

a transfer is automatically inserted between the two kernels to send the data. Each of

these transfers is listed in the table. A board support package may provide multiple

transfer methods for the target hardware, and each transfer method may have parameters

that can be set to optimize the transfer’s performance.

The table lists the transfers according to the name of the destination of the transfer, that

is, the input to the kernel that receives the data. The table also lists an Id number for the

transfer. This Id number is used in the name of the send and receive kernels inserted into

the application (for example, “send_13”), and the names are useful for tracking transfers

in the Trace Table and other debugging dialogs. The table also lists the source and

destination processor id number.

 Setting the Transfer Method

The transfer method is selected in the Xfer Type column. There are two main types of

transfers – streaming transfers and DMA transfers (direct memory access).

 Setting Transfer Method Parameters

Streaming transfers, such as sockets, have an NBsize parameter. The NBsize specifies

the size of the buffer and, if set high enough, can ensure the transfer is nonblocking. The

column can be set to an integer number of bytes or to the string “nb” to allow Gedae to

determine the size of the buffer required to make the transfer nonblocking.

DMA transfers allow both the sends and receives to be multibuffered. The Send Bufs

and Recv Bufs columns allow the user to specify the number of buffers to use in the

multibuffering scheme for each transfer.

Additional parameters may be available for the target system and can be set in the Xfer

Params column.

6 Firing Granularity

Granularity can be either increased or decreased via the Fire Table. The goal is to set the

granularity such that fast memory (cache or other local storage) is best utilized. It is best

to process at large granularities, but not so large that the data does not fit into fast

memory.

The Name column lists the schedules in the graph. Underneath the schedules, it

enumerates sets of boxes that must have the same granularity. The boxes in the set can

be viewed by double clicking on the integer label.

 Setting the Granularity

The Gran column is the only settable column. The Bytes column shows an estimate of

how many bytes are required from memory to execute at granularity 1. The Bytes*Gran

column shows how many bytes are required from memory to execute at the current Gran

settings. The Gran column should be set such that Bytes*Gran makes good use of fast

memory.

The Gran field can be set to change the Byes*Gran field in one of four ways:

1. Edit->Reset All Grans: Set all granularities to the Total G (that is, the total

granularity of the boxes in the set, or the number of times the boxes must fire to

complete one cycle of the schedule it is part of).

2. Edit->Set Limit: Set all granularities in an attempt to keep Bytes*Gran less than

the limit entered. If this limit is less than the Bytes value, then the schedules are

automatically subscheduled in order to reduce memory usage. If this limit is

greater than the Bytes value, then the schedules’ granularities are increased as

much as possible while staying within the limit. Maximum subscheduling can be

achieved by setting the limit to 0.

3. Options->Set Gran: Sets the Gran field of the selected set or schedule to the value

entered.

4. Directly typing values into the Gran column in the table.

 Subscheduling

Subscheduling (or strip-mining) allows the granularity to be decreased below the natural

granularity. A common example of a situation where it is advantageous to apply

subscheduling is the row-wise processing of a matrix. If a stream of R row vectors is

extracted from a matrix, processed individually, and then inserted back into the matrix,

then subscheduling can be applied to process one row at a time instead of the full R

vectors.

7 Multibuffering Unmapped Memory Transfers
Mapped memory is normal processor memory that can be accessed by dereferencing

pointers to the memory. Unmapped memory is memory that can only be accessed via a

set of functions that move data between unmapped and mapped memory. Some BSPs

provide the ability to allocate large memory blocks that are unmapped. For example, the

Gedae SPU BSP that runs on Cell/B.E SPU processors allows memory areas to be

declared unmapped. The Gedae functions supporting the transfer of data between

unmapped and mapped memory are defined in the Gedae Primitive Function Reference

Manual. These functions include both blocking and nonblocking versions of functions

for moving data between mapped and unmapped memory. Variants of these functions

are also available for moving data between subtiles in unmapped memory into a

contiguous matrix in mapped memory.

Gedae allows users to declare that primitive inputs or outputs are in unmapped memory

(see the Gedae Primitive Programmers Manual). Zero-copy data-reorg primitives are

primitives whose inputs are inplace with their outputs and do not modify the values of the

data, but merely reinterpret it. If the input or output of a zero-copy primitive is

connected to an unmapped memory, then the other input or output and its inplace

counterpart are both declared unmapped. Thus starting at a primitive whose port is

declared unmapped, Gedae propagates this unmapped status through all zero-copy

primitives. When a port that is marked unmapped is connected to a non-zero copy

primitive whose port is not unmapped, then Gedae automatically inserts a primitive to

move data between the unmapped and mapped ports.

For example, consider the following graph. In this graph the mzt_vzt box is a zero-copy

box that is connected at a higher level to unmapped memory so its memory ports are

unmapped. It is connected to the vz_range processing graph that consists of a vz_multV

followed by a vz_fft. These primitives modify the data and their ports are therefore

mapped. Following the vz_range is a vzt_mzt box whose ports are again unmapped.

When Gedae schedules the execution of these primitives it must insert getu primitives

between the mzt_vzt box and the vz_multV box. (It must insert two primitives since the

split complex data is really two data streams.) Following the vz_fft Gedae schedules two

putu primitives to move the data between the mapped vz_fft memory and the unmapped

vzt_mzt input pointer.

We see the getu and putu primitives inserted into the processing in the following Trace

Table:

The getu and putu primitives are blocking. That is, the primitives start a DMA from

unmapped to mapped memory and wait for the DMA to complete before allowing the

processing of the data to continue. Gedae allows the user to specify using a double

buffering scheme to avoid waiting for the DMA’s to complete until after one cycle of the

schedule has executed. Double buffering allows processing to be done in parallel with IO

and improves performance.

A user can enable double buffering using the Group Control Dialog Multi-Buffer Table.

Gedae detects which subschedules can benefit from multibuffering and lists them by

subschedule number in the Multibuffering tool. The user can expand any subschedule to

see what primitives are contained in that subschedule. The user can turn on

Multibuffering on individual subschedules by toggling the MB field. The user can turn

on Multibuffering on all subschedules by selecting Edit->Set All MB Entries and setting

the entries to the value “1”.

When Multibuffering is enabled the subschedule is split into as many as three different

subschedules that have the suffixes get, exec and put. The get subschedule is responsible

for kicking off the DMAs to fetch data from unmapped memory, the exec subschedule is

responsible for processing data and the put subschedule is responsible for kicking of

DMAs to write data back to unmapped memory. Wait primitives are scheduled at

appropriate places to wait for DMAs to complete but only after a full cycle of the

schedule processing is done.

The Trace Table below shows the execution of a multibuffered subschedule. At the

beginning of subscheduling, the get subschedule is executed twice. Two buffers are

fetched during this time. The first buffer will be used by the first firing of the exec

subschedule and the second buffer by the second firing of the exec subschedule. The

exec subschedule will wait for a get buffer, but once in the steady state it will do this only

after a full cycle of exec processing is complete. Thus, the input DMA is overlapped

with one cycle of the processing. Similarly there are multiple output buffers. The

put_nw kicks off a DMA from an output buffer but only waits for the DMA to complete

after one full cycle of the processing when it will be necessary to use the buffer again.

The arrows in the diagram below show which the wait kernels that are associated with the

get_nw and put_nw primitive executions.

Below we see that when the subscheduling of the input matrix completes on the last cycle

a get is not executed because the buffer to be processed was already retrieved on the

previous cycle. However, a wait is invisibly executed at 1 to implement the wait that is a

part of the get schedule. After the last cycle, two wait kernels that were invisibly issued

at 2 by the Gedae wait for the last two put schedule executions that do not have

corresponding waits.

While the above Trace Tables illustrate how the multibuffering works, they do not show

a great benefit in efficiency because in these examples the vz_vmultV and vz_fft are long

compared to the getu and putu. The processing is CPU bound. When the processing

times are shorter – as they are when running on the Cell/B.E.-- the processing becomes

I/O bound, and the multibuffering becomes important and can greatly reduce the

processing time.

Gedae automatically insert different primitives to move data between unmapped and

mapped memory depending on whether the buffers are tiled or not and depending on if

multibuffering is turned on or not. In addition, even if the memory on both sides of a

connection is mapped but one side is tiled and the tile is embedded in a larger matrix and

the other side of the connection is not tiled, then Gedae automatically inserts a box to

move data from the tile to the non-tiled port. A summary of the different types of

primitives that can be added in all of these cases is illustrated in the table below. If the

Get/Put column is labeled get, then the Unmapped and Tiled columns apply to the source

port of the connection requiring a translation primitive. If the column is labeled put, then

the Unmapped and Tiled columns apply to the destination port of the connection.

Get/Put Unmapped Tiled Multibuffer Box Name

get no no x no function needed

get no yes x internal/mt_m

1 2

get yes no no internal/getu

get yes no yes internal/getu_nw

get yes yes no internal/mtu_m

get yes yes yes internal/mtu_m_nw

put no no x no function needed

put no yes x internal/m_mt

put yes no no internal/putu

put yes no yes internal/putu_nw

put yes yes no internal/m_mtu

put yes yes yes internal/m_mtu_nw

Note, a transfer port is not considered tile if the tile size only differs in the row

dimension. That is, a matrix out[256:512][128:128] connected to a matrix

in[256][128] does required a tiled transfer. In this case a getu or getu_nw

transfer primitive is inserted if the out source is unmapped.

8 Priority Table
A schedule orders the execution of kernels. Scheduling, that is, the creation of schedules,

happens during compilation. Several orderings may be possible. The user may wish to

order the kernels in a specific way to handle external side effects, order sends and

receives, etc. This ordering can be affected by the user through the setting of priorities.

Because Gedae cannot create an illegal schedule, some priority settings may have no

effect.

The default priority for each kernel is 0. Setting a priority to a positive number moves it

up in the schedule, that is, it will potentially fire earlier. Setting a priority to a negative

number moves it down in the schedule.

9 Memory Packing Control

The Static Memory Packer Pulldown Menu in the Group Control Dialog allows selecting

between different memory packing algorithms. All memory packing is done during

compilation, but larger applications may wish to use more lightweight algorithms to

reduce compile time at the price of memory usage. The default is Fast Packer – a

lightweight algorithm. Single Block Packer and Multi Block Packer provide

progressively better packing but take longer to calculate the packing. No Packing is

available to skip memory packing altogether.

10 Setting Dynamic Queue Properties
The Queue Table is used to display information and control the capacity of dynamic

queues. The Queue Table is launched by pressing the Queue Table button in the Group

Control. The table lists all the dynamic queues in the group. The Name shows the

destination of the dynamic queue. The Capacity is shown in number of tokens, where

Bytes is the storage size allocated to hold this capacity, that is, the capacity times the

token size. The Memory Type shows which memory bank the queue is allocated in, and

if multiple banks are available, allows for the mapping of the queue to memory. For

example on the Cell/B.E. processor, the user may wish to map queues to huge TLB pages

for efficiency.

The Src and Dest Policy provide information on when schedules fire according to the

presence of tokens in the queue. The Src Policy specifies when the source schedule fires,

and the Dest Policy specifies when the destination schedule fires. The possible policies

are:

 cont – a controlling queue. The schedule will fire if any tokens or space are

available, shrinking itself to handle the smallest availability on a controlling

queue.

 req – a required queue. The queue requires the number of tokens dictated by the

controlling queues before it will fire.

 n-req – a non-required queue. The schedule can fire even if no tokens are

available on the queue and may, while running, determine that tokens are actually

needed.

11 Setting Static Schedule Thread Properties
The Schedule Parameters dialog provides easy access to a list of schedules and

information about the schedules, such as finding what primitives are in each schedule. It

also allows for the setting of thread properties for the schedules. The table is opened by

pressing the Schedule Parameters dialog in the Group Control. Each schedule acts like a

thread on the target processors. If a partition has multiple schedules, then the runtime

kernel is responsible for determining when to execute each schedule. The settings and

data in this dialog can help describe the policy for running schedules and allow the user

to set priorities, to set periods and to retry times for schedules.

The Name field is grouped by partition. Each partition can have multiple schedules

mapped to it. Each schedule may have several subschedules. The Name column may

also list Memory Segments, relating to memory partitions created in the Memory

Partition Table.

Each schedule is listed with its size in bytes and its length in number of kernels. The

following parameters can be set:

 OV – For BSPs that support overlays this column allows the user to select what

parts of the application go into a separate overlay. If set for a partition then Reset

methods are place in their own overlay. If set for a schedule then the schedule is

placed in an overlay. If set for a subschedule then the subschedule is placed in an

overlay.

 Priority – aids the runtime kernel in choosing which schedule to run first.

Schedules with larger priority (closest to positive infinity) will execute first, and

schedules with lowest priority (closest to negative infinity) will execute last.

 Period – tells the runtime kernel the period between schedule firings. The default

setting, relating to a blank entry in the column, is to follow dataflow policy, that

is, the schedule should fire when data is available. A period can be entered in

seconds or number of schedules.

o Seconds – if in seconds, then the number of seconds must elapse between

the start of successive execution of the schedule. This period is useful for

emulating real-time data sources or for monitoring other external

resources.

o Schedules – if in schedules, then the given number of schedules must fire

before this schedule fires again.

 Retry – tells the runtime kernel when to retry firing a schedule if there is an error

condition such as a primitive calling embSuspendRetry(). The retry period can

also be in seconds or schedules.

 Memory Type – where to allocate the data buffers for the schedule in memory.

Additionally, the Schedule Parameters dialog provides a set of Boolean flags to specify

information about the schedule used by the runtime kernel, such as whether it uses shared

memory, requires exclusive locks to access memory, and other runtime scheduling issues.

A full list of these flags is available in the Help message for the dialog.

12 Launch Package Generation Control
A Launch Package is a directory containing executables that allow a single group to be

executed independently from the development environment. A command program is also

generated to control the loading, launching and execution of all the executables. There

are three options for using this launch package:

 As a standalone, deliverable application

 As a parent application integrating with non-Gedae components through

customization of the command program

 As a child function through use of the function interface to the command

program.

 Parameters and Queues

The Parameters and Queues visible to external software are listed in the dialog. The

default names of these data are based on the hierarchy of the flow graph. Shorter names

can be given by specifying Synonyms. The Parameters are all parameters that can be

changed at runtime; the compiler aggressively precomputes parameters to avoid runtime

recalculation. The Queues are the boundaries between groups created by the boxes in the

embeddable/stream/host directory.

 Executables

The executable creation can also be customized to best suit the target hardware. Note:

target hardware provides a target-specific value of these settings. The settings are

 Create Schedules in Command Program – The schedule information is contained

in the command program and sent to the target processors at start up.

o Create Target Executables As Arrays in Command Program – This option

code generates binary arrays representing target executables into the

command program. The option may not be available on all target

processors.

o Create Unified Target Executable – This option creates one executable

containing all partitions and all kernels of the graph. This option reduces

the storage requirements as only one executable is created and can be used

to support targets that require SPMD (Single Program Multiple Data).

 Create Schedules in Target Executables (No Host) – Target executables are

completely self-contained and start up without host intervention. Note: running

without host intervention disables useful debugging features such as trace

collection.

 Launch Package

The command program can be customized using the Command Program Interface. The

directory to store the launch package, any customizations to the command program C

source file, and libraries or object files to link with the command program can be placed

in the Command Program section of the dialog. Each of these entries is a path to the

corresponding directory or file(s).

